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ABSTRACT

A new and elegant formulation for yield optimization
is presented with applications to microwave circuits. It extends
the conventional discrete Monte Carlo estimate of yield to a
continuous yield probability function suitable for gradient-based
optimization. The merit of our new method is demonstrated
by yield optimization of an amplifier and a nonlinear FET
doubler.

INTRODUCTION

Yield optimization must be included as an integral part
of the design process in order to improve first-time design
success rate and to reduce manufacturing cost. Many different
approaches to design centering/yield optimization have been
explored. Methods which attempt to optimize the theoretical
yield as an integral function are usually too complicated for
practical implementation in circuit CAD programs. Typically,
circuit CAD programs estimate yield by Monte Carlo simula-
tion.

The yield estimated by Monte Carlo simulation is a
discrete function and cannot be directly optimized by gradient-
based methods. The new formulation introduced in this paper
extends the classical Monte Carlo concept by replacing the
discrete acceptance index (outcome passed or failed) with a
continuous yield probability function suitable for gradient-based
optimization.

We demonstrate the merit of our new formulation by
the yield optimization of a small-signal amplifier and a non-
linear FET frequency doubler. We compare the effectiveness
and efficiency of the new formulation with the one-sided ¢,
centering approach by Bandler et al. [1-3].

The new yield probability formulation is implemented
in the general-purpose microwave circuit CAD/CAE system
0OSA90/hope™ [4]. This system was used to produce all the
numerical results contained in this paper.
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YIELD PROBABILITY FUNCTION

Let ¢ denote the vector of circuit parameters subject
to tolerances and other statistical variations. We can define a
generalized least pth error function H(¢) [1,5] such that
H($) < 0 if all specifications are satisfied
(1)
H(¢) > 0 if some specifications are violated
The theoretical yield can be represented by the probability
P(H($) < 0) )
given the statistical distribution of ¢.

In Monte Carlo simulation, a finite number of random
outcomes are sampled from the distribution of ¢, and the yield
is estimated by the percentage of acceptable outcomes. If we
define an acceptance index I(¢) such that

if H(¢) < 0

1
K¢) = { (3)
0 if H(¢) > 0

then the Monte Carlo yield estimate can be expressed as

Y=YK& /N )

where the summation is over k = I, 2, ... N, and N is the total
number of outcomes. The estimate given by (4) is not suitable
as an objective function for gradient-based optimization due to
the discrete nature of I($) and its discontinuity at H(¢) = 0.

Our motivation is to find a substitute for I(¢) that is
more suitable for gradient-based optimization. We consider a
neighborhood of the outcome ¢", denoted by ﬂk, and represent
the yield in 0¥ by the probability

PX = P(H($) < 0| ¢ € 09 s

Then the overall yield can be estimated by
Y=YP/N 6)
The classical Monte Carlo estimate (4) becomes a special
case of (6) when 0¥ consists of a single outcome ¢k and con-
sequently Pk = I(¢k). If we extend 0¥ from a point to a region
P* becomes a continuous measure of the intersection of 2% and
the acceptability region, and the value of P* varies continuous-

ly between O and 1.

To evaluate P* precisely as defined by (5), we will need
to know the distribution of H(¢) in 0ok As an approximation,
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we may use the sample means of H(¢), denoted by H(¢), to
replace H(¢) in (5):

PraPE=PH@G) < 014ca" )

According to the central limit theorem [6), the frequency
distribution of H(4) can be assumed to be normal (Gaussian).
Hence, P¥ in (7) is the probability of a normal distribution
which can be computed in a straightforward manner using,
for instance, the Hastings formula [7}

— I-f if u<0
f if u>0
[ =05 (ayf + ag® + agl® + it + af®) e ®)
x=u4/W2o0)

t=1/(1 + 03275911 |x))

where p and o are the mean value and standard deviation of
H($) in 0¥, respectively, and a, = 0.2548296, a, = -0.2844967,
a; = 1421214, a, = -1.453152 and ag = 1.061405. Fig. 1
depicts P* as a function of p.
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Fig. 1. Yield probability function P* versus p.

Since Q* is defined conceptually as a small neighbor-
hood of ¢*, we use H(¢*) as p in 05, When H(¢%) >> 0, ¢* is
far away from the acceptable region, and therefore the yield
probability P* approaches 0. When H(¢*) = 0, ¢* is on the
boundary of the acceptable region and P* = 0.5. As ¢* moves
inside the acceptable region (H(¢k) < 0),?k approaches 1. The
standard deviation of H(g), o, provides a measure of the circuit
performance variation in Q* and affects P¥ as a scaling factor.

Our new method is implemented in the general-purpose
microwave CAD/CAE system OSA90/hope™ [4]. This system
was used to produce the application results presented in this
paper. In this implementation H(¢) is chosen as a generalized
least squares function (i.e., p = 2). We define the objective
function as

F=1-YPf/N )

to transform the maximization of the estimated yield into the
minimization of F. Here, N is the total number of outcomes
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involved in yield optimization and the summation is over k =
1, 2, .., N. A quasi-Newton optimizer based on Powell’s
algorithm [8] is employed to minimize F.

SMALL-SIGNAL AMPLIFIER

We consider yield optimization of a single-stage small-
signal 10MHz to 1GHz amplifier [9], as shown in Fig. 2. The
design specifications are input/output return loss < -8dB, and
9dB < gain £ 10dB. The parameters R,, L,, L, and C, are

considered as design variables.

—0

Fig. 2. Single-stage small-signal amplifier [9].

First, a nominal design is obtained by minimax optimi-
zation. At the nominal solution, tolerances were assumed for
the parameters Ry, Rg, L, and C,, as listed in Table I. The
yield was estimated as 37.8% by Monte Carlo analysis with 500
random outcomes.

TABLE 1

SMALL-SIGNAL AMPLIFIER PARAMETERS

Parameter Nominal After Yield Tolerance” or
Design  Optimization Standard Deviation!

R, () 154.2 151.3 10%!

R, () 300.0 300.0 -

R4 (0) 5.0 .50 5%t

R, () 550.0 550.0 -

L, (nH) 23.39 25.34 -,

L, (nH) 8.269 7.283 15%

C; (pF) 4.0 4.0 5%t

C; (pF) 15.09 10.55 -

* Assumed tolerance of uniform distribution
t Assumed standard deviation of Gaussian distribution

After yield optimization using our new method, the
yield was increased to 50%. 20 outcomes were used in the
vield optimization (500 outcomes were used in the Monte Carlo
analyses before and after optimization). The yield optimization
took 30 seconds of CPU time on a Sun SPARCstation 1.

For comparison, we repeated the yield optimization
using the one-sided ¢, centering algorithm [1-3]. Using the
same number of outcomes, the yield of the centered design was



42.6%, and then further increased to 45.6% after a restart of
optimization (it took 33 seconds of CPU time including the
restart). The problem is that the yield predicted by the one-
sided ¢, algorithm (based on 20 outcomes) is not close enough
to the yield estimated by Monte Carlo analysis (based on 500
outcomes). When 100 outcomes were included in optimization,
the yield was increased to 50% (total CPU time: 96 seconds).
Here, the new method demonstrates a clear advantage: no
restart of optimization is needed; the predicted yield is more
precise and hence a better solution (higher yield) is achieved
without increasing the number of outcomes in optimization.

The parameter values after yield optimization are listed
in Table 1. Fig. 3 shows the run charts of the amplifier gain
at 1GHz before and after yield optimization.
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Fig. 3. Run charts of the small-signal amplifier gain at IGHz

obtained from Monte Carlo analysis; (a) before yield
optimization, and (b) after yield optimization. The
horizontal lines represent the specifications.
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NONLINEAR FET DOUBLER

We now consider an application to nonlinear microwave
circuits. Fig. 4 depicts a nonlinear FET frequency doubler [3].
It consists of a FET characterized by a large-signal statistical
model and input/output matching networks. Details of the
parameter values and the FET statistics are given in [3]. The
input fundamental frequency is SGHz. The specifications are
conversion gain > 2.5dB and spectral purity > 19dB.
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Fig. 4. Nonlinear FET frequency doubler.

The yield of the doubler was 31% for the nominal
design (predicted by Monte Carlo analysis with 500 outcomes).
The yield was improved to 74% after optimization using the
new method. The optimizable variables included the lumped
input matching network element L, and the microstrip lengths
1, and I,. Their values are listed in Table Il. The number of
outcomes involved in optimization was 50 and the CPU time
consumed was 20 minutes. Fig. 5 shows the histograms of the
doubler spectral purity before and after yield optimization.

TABLE 11

OPTIMIZABLE VARIABLES OF THE DOUBLER

Optimization Before Yield After Yield
Variable Optimization Optimization
L, (nH) 5.462 5.350
!, (mm) 1.483 1.655
1y, (mm) 5.771 5.915

In comparison, the yield optimized by the one-sided £,
centering algorithm [1-3] with the same number of outcomes
was 74.6% (19 CPU minutes). In this case, the solutions and
efficiency of the two methods are very similar.

CONCLUSIONS

We have presented a new formulation for circuit yield
optimization. We have introduced a yield probability function
to replace the discrete and discontinuous acceptance index in
the classical Monte Carlo analysis. This has led to a yield
estimate suitable for gradient-based optimization,

The new formulation has been implemented in the
microwave circuit CAD/CAE system OSA90/hope. We have
demonstrated its effectiveness and efficiency through relevant
circuit applications, and the results compare favorably with
the well-established one-sided £, centering algorithm.
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yield optimization, and (b) after yield optimization.

The vertical line represents the specification.
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