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ABSTRACT

A new and elegant formulation for yield optimization
is presented with applications to microwave circuits. It extends
the conventional discrete Monte Carlo estimate of yield to a

continuous yield probability junction suitable for gradient-based
optimization. The merit of our new method is demonstrated
by yield optimization of an amplifier and a nonlinear FET
doubler.

INTRODUCTION

Yield optimization must be included as an integral part
of the design process in order to improve first-time design

success rate and to reduce manufacturing cost. Many different
approaches to design centering/yield optimization have been
explored. Methods which attempt to optimize the theoretical
yield as an integral function are usually too complicated for

practical implementation in circuit CAD programs. Typically,
circuit CAD programs estimate yield by Monte Carlo simula-

tion.

The yield estimated by Monte Carlo simulation is a

discrete function and cannot be directly optimized by gradient-

based methods. The new formulation introduced in this paper
extends the classical Monte Carlo concept by replacing the

discrete acceptance index (outcome passed or failed) with a

continuous yield probability function suitable for gradient-based

optimization.

We demonstrate the merit of our new formulation by
the yield optimization of a small-signal amplifier and a non-

linear FET frequency doubler. We compare the effectiveness
and efficiency of the new formulation with the one-sided tl
centering approach by Bandler et a2. [1-3].

The new yield probability formulation is implemented

in the general-purpose microwave circuit CAD/CAE system

0SA90/hope”’ [4]. This system was used to produce all the
numerical results contained in this paper.
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YIELD PROBABILITY FUNCTION

Let # denote the vector of circuit parameters subject

to tolerances and other statistical variations, We can define a
generalized least pth error function H(d) [1,5] such that

H(I#) s O if all specifications are satisfied

(1)

H(4) >0 if some specifications are violated

The theoretical yield can be represented by the probability

P(H(#) < O) (2)

given the statistical distribution of 4.

In Monte Carlo simulation, a finite number of random
outcomes are sampled from the distribution of #, and the yield
is estimated by the percentage of acceptable outcomes. If we
define an acceptance index I(d) such that

{

1 if H(+) < 0

I(#) = (3)
o if H(d) > 0

then the Monte Carlo yield estimate can be expressed as

Y=~I(#k)/N (4)

where the summation is over k = 1, 2, ... N, and N is the total
number of outcomes. The estimate given by (4) is not suitable

as an objective function for gradient-based optimization due to
the discrete nature of I(#) and its discontinuity at H(I$) = O.

Our motivation is to find a substitute for I(#) that is
more suitable for gradient-based optimization. We consider a
neighborhood of the outcome ~k, denoted by t2k, and represent

the yield in flk by the probability

(5)Pk = P(H(#) s O I ~ G fkk)

Then the overall yield can be estimated by

Y=~Pk/N (6)

The classical Monte Carlo estimate (4) becomes a special
case of (6) when fik consists of a single outcome #k and con-
sequently Pk = I(#k). If we extend tlk from a point to a rfgion
Pk becomes a continuous measure of the intersection of fk and

the acceptability region, and the value of Pk varies continuous-
ly between O and 1.

To evaluate Pk precisely as defined by (5), we will need
k As an apprOXimatiq

to know the distribution of H(#) in tl .
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we may use the sample means of H(+), denoted by ~(d), to
replace H(d) in (5 I

Pk STk = P(H(#) s o I d= rlk) (7)

Accordi~g to the central limit theorem [6], the frequency
distribution of H(I#) can be assumed to be normal (Gaussian).
Hence, ~k in (7) is the probability of a normal distribution
which can be computed in a straightforward manner using,

for instance, the Hastings formula [7]

{

l-f ifp<O
~k .

f ifp20

f = 0.5 (alt + a2t2 + a~ts + a4t4 + a~ts) e
-G (8)

X= P/(mu)

t = 1 / (1 + 0,3275911 1x1)

where p and u are the mean value’ and standard deviation of
~(~) in Klk, respectively, and al = 0.2548296, a2 = -0.2844967,

a3 = 1.421214, a4 = -1.453152 and as = 1.061405. Fig. 1

depicts ~k as a function of p.
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Fig. 1. Yield probability function ~k versus p,

Since ftk is defined conceptually as a small neighbor-

hood of #k, we use H(#k) as # in Ok. When H(#k) >>0, #k is
far away from the acceptable region, and therefore the yield

probability ~k approaches O. When H( ‘) = O, #k is on the
-f

boundary of the acceptable region and P = 0.5. As #k moves
inside the acceptable region (H(I#k) < O), ~k approaches 1. The

standard deviation of ~(~), u, provides a measure of the circuit
performance variation in flk and affects ~k as a scaling factor.

Our new method is implemented in the general-purpose

microwave CAD/CAE system 0SA90/hope’” [4]. This system
was used to produce the application results presented in this

paper. In this implementation H(d) is chosen as a generalized
least squares function (i.e., p = 2). We define the objective
function as

F=l-~~k/N (9)

to transform the maximization of the estimated yield into the
minimization of F. Here, N is the total number of outcomes

involved in yield optimization aud the summation is over k =
1, 2, .... N. A quasi-Newton optimizer based on Powell’s

algorithm [8] is employed to minimize F.

SMALL-SIGNAL AMPLIFIER

We consider yield optimization of a single-stage small-

signal 10MHZ to 1GHz amplifier [9], as shown in Fig. 2. The

design specifications are input/output return loss s -8dB, and
9dB s gain s 10dB. The parameters RI, Ll, L2 and C2 are
considered as design variables.

.
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Fig. 2. Single-stage small-signal amplifier [9].

First, a nominal design is obtained by minimax optimi-
zation. At the nominal solution, tolerances were assumed for

the parameters RI, R~, L2 and Cl, as listed in Table I. The
yield was estimated as 37.8r70 by Monte Carlo analysis with 500

random outcomes.

TABLE I

SMALL-SIGNAL AMPLIFIER PARAMETERS

Parameter Nominal After Yield Tolerance* or

Design Optimization Standard Deviation

RI (kl) 154.2 151.3 1Ovot

R2 (n) 300.0 300.0
R3 (n) 5.0 5.0 5%t
R. m) 550.0 550.0
L; (nH) 23.39 25.34

L2 (nH) 8.269 7.283

C, {DF) 4.0 4.0
15VO*
S%t. .. .

C2 (PF) 15.09 10.55

* Assumed tolerance of uniform distribution

t Assumed standard deviation of Gaussian distribution

After yield optimization using our new method, the

yield was increased to 50Y0. 20 outcomes were used in the

yield optimization (500 outcomes were used in the Monte Carlo
analyses before and after optimization). The yield optimization
took 30 seconds of CPU time on a Sun SPARCstation 1,

For comparison, we repeated the yield optimization
using the one-sided El centering algorithm [ 1-3]. Using the
same number of outcomes, the yield of the centered design was
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42.6%, and then further increased to 4516% after a restart of
. . . . .. . ..- .- --- ------ . .

optimization (it took 33 seconds of CPU time including the
restart). The problem is that the yield predicted by the one-

sided tl algorithm (based on 20 outcomes) is not close enough
to the yield estimated by Monte Carlo analysis (based on 500
outcomes). When 100 outcomes were included in optimization,
the yield was increased to 50% (total CPU time 96 seconds).
Here, the new method demonstrates a clear advantage no
restart of optimization is needed; the predicted yield is more

precise and hence a better solution (higher yield) is achieved
without increasing the number of outcomes in optimization.

The parameter values after yield optimization are listed
in Table I. Fig. 3 shows the run charts of the amplifier gain

at 1GHz before and after yield optimization.
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We now consider an application to nonlinear microwave

circuits. Fig. 4 depicts a nonlinear FET frequency doubler [3].
It consists of a FET characterized by a large-signal statistical
model and hxput/output matching networks. Details of the

parameter values and the FET statistics are given in [3]. The
input fundamental frequency is 5GHz. The specifications are

conversion gain > 2.5dB and spectral purity > 19dB.

L
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Fig. 4. Nonlinear FET frequency doubler.

The yield of the doubler was 31% for the nominal

design (predicted by Monte Carlo analysis with 500 outcomes).

The yield was improved to 74% after optimization using the
new method. The optimizable variables included the lumped
input matching network element L1 and the microstrip lengths

11 and 12. Their values are listed in Table II. The number of

outcomes involved in optimization was 50 and the CPU time
consumed was 20 minutes. Fig. 5 shows the histograms of the
doubler spectral purity before and after yield optimization.

TABLE II

(a)
OPTIMIZABLE VARIABLES OF THE DOUBLER

Optimization Before Yield After Yield

Variable Optimization Optimization

9.8
I
I ●

8.6 I
1 189 208 300 488 588

Fig. 3.

Index of Outcome

(b)

Run charts of the small-signal amplifier gain at IGHz
obtained from Monte Carlo analysis (a) before yield
optimization, and (b) after yield optimization. The
horizontal lines represent the specifications.
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L1 (nH) 5.462 5.350

11 (mm) 1.483 1.655

1, (mm) 5.771 5.915

In comparison, the yield optimized by the one-sided El

centering algorithm [1-3] with the same number of outcomes
was 74.6% (19 CPU minutes). In this case, the solutions and

efficiency of the two methods are very similar.

CONCLUSIONS

We have presented a new formulation for circuit yield

optimization. We have introduced a yield probability function
to replace the discrete and discontinuous acceptance index in
the classical Monte Carlo analysis. This has led to a yield
estimate suitable for gradient-based optimization.

The new formulation has been implemented in the
microwave circuit CAD/CAE system OSA90/hope. We have
demonstrated its effectiveness and efficiency through relevant

circuit applications, and the results compare favorably with
the well-established one-sided tl centering algorithm.
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Fig. 5. Histograms of the doubler spectral purity (a) before
yield optimization, and (b) after yield optimization.

The vertical line represents the specification.
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